

EPA-NR Energy Performance Assessment for Non-Residential Buildings in Europe

Rofaïda Lahrech - CSTB

Bart Poel - EBM

Content

- Objective EPA-NR and the partners
- Key issues in development of assessment methods
- EPA-NR method and tools
- Application strategies
- Pilot studies: the tools in practice

To support Member States in the EPBD implementation by:

- producing a general method for the assessment of the energy performance of existing non residential buildings that can easily be applied in practice. (practitioners)
- provide guidance for those implementation aspects that are related to the method. (policy makers)

More specifically:

- benefit from experiences in the MS
- provide a method and instruments (including software)
- test and show the functioning in practice
- provide guidance to end-users and policy makers
- exchange knowledge and ideas

AUSTRIA - Arsenal Research

- Österreichisches Ökologie Institut (ÖÖI)

DENMARK Danish Building Research Institut (SBi)

FRANCE Centre Scientifique et Technique du Bâtiment (CSTB)

GERMANY Fraunhofer-IBP

GREECE National Observatory of Athens (NOA)

ITALY National Agency for New Technology, Energy and

the Environment (ENEA)

The NETHERLANDS - Netherlands Organisation for Applied Scientific Research (TNO)

EBM-consult (project co-ordinator)

Observer countries

Belgium Cyprus

Czech Republic Luxemburg

Malta Norway

Poland Romania

Serbia Slovakia

Slovenia Spain

United Kingdom

Balance the trade-off's in the assessment process

- Effective and efficient process (accuracy/reproducibility against cost) (data acquisition/inspection using defaults)
- Harmonisation versus flexibility in practice (Harmonise uniform parts and create flexibility to adjust to local conditions)

Assessment process

Stages are dependent on building type, type of client, number of buildings

Typical stages

Policy makers

Survey of the context in MS

National reports on pilot projects

Overall report on pilot projects

Practitioners

Description of the EPA-NR method and tools

Checklist for an intake interview

Building inspection protocol

EPA-NR software

Report on functionalities of the instruments

Application strategies for the EPA-NR method

Brochures (general and thematic)

Typical stages

Tools per stage

Tools on the method as a whole

Intake interview with client

Checklist on intake

Booklet on method

Data acquisition

Inspection protocol

Application strategy

Calculation and analyses

Software and manual

Report results (country specific; no tool)

Checklist on the intake

First step in the EP assessment process

- get acquainted with the client and his organisation
- refine the definition of the deliverable
- discuss the acquisition of the data needed
- discuss and decide on the assessment process
- get information about the client's wishes: the possibilities and strategies with respect to the building or the building stock to a limited extent

Inspection protocol (1)

The data acquisition often contains three steps:

- 1. data from interview with the owner and/or facility manager
- study of architectural drawings and other planning documentation such as HVAC schemes
- 3. inspection of the building and systems additional information or checking already known information

Inspection protocol (2)

The report is divided into three parts:

- the inspection protocol (list of necessary data to be identified during the inspection of the building) including international and national inspection tips
- an inspection protocol check list adapted to the required input by the EPA-NR tool
- additional national tips on how to acquire data that cannot be gathered during the inspection but is needed for the calculation with the EPA-NR tool.

EPA-NR software

Software screen lay out

Application strategies

The consultant and the typology of clients and their interests

To evaluate the method and tools and provide examples:

- building sectors: education, offices, health care
- each sector represented in 7 countries: 21 projects
- building ages vary from 2 to 70 years
- sizes range from 800 to 30,000 square meters

The whole method is applied to pilot projects

Pilots EPA-NR: educational buildings

primary and secondary school at stuttgart (DE)

University in Champs sur Marne (FR)

school at Amsterdam (NL)

Pilots EPA-NR: educational buildings

Schools in Greece

Pilots EPA-NR: offices buildings

office of the ministry of environment, Berlin (DE)

Office building at Amsterdam (NL)

office of private insurance company, Munich (DE)

Pilots EPA-NR: offices buildings

Office building - Greece

Office building - France

Pilots EPA-NR: health care buildings

home for the elderly, nursery home Stuttgart (DE)

Hospital, building for Handicapped persons, Lagny (Fr)

Hospital, Apeldoorn, (NL)

Lyon conference EPA-NR

- All pilot projects are selected
- Execution of pilot projects is going on
- •Stages already finished:
 - intake interview
 - inspection of the buildings

- •Calculation of energy performance using EPA-NR software/calculation of energy savings impact :
 - •First calculations based on pilot projects : some clarifications and explanations are needed
 - List of modifications finalised
 - Update the software
- •Calculations using new version of EPA-NR software : from December 2006 to February 2007
- •National reports + global report +brochures

First impressions about: Checklist on intake (intake interview with the client)

- rives guidance to discuss with the client
- ➤ Very helpful for the first approach to the building
- Facilitates to identify data sources (i.e. drawings, technical specifications, energy and water bills, interviews with occupants)
- The objectives are clear but the document is too detailed
- relatively detailed list of additional to the Energy Certificate deliverables, that the consultant can introduce to the client
- >could be adapted in accordance to the national legislation.
- >client is well informed after the intake interview

First impressions about : Inspection protocol (inspection of the building)

- Most of the required data are comprehensible although in some cases, very detailed
- ➤In most cases, the inspection protocol facilitates the user with some "difficult" data, providing tips or default values
- ➤ In general it gives guidance on the relevant points to check for a proposal of saving measures recommendations
- ➤ the inspection protocol allows having the most calculation tool inputs
- Some data that need further explanation (software inputs)
- **>**.....

- Project summary: brief description of the project
- Audit of the building
 - Actual situation: measured energy consumption, problems, possible causes, proposed solutions: elements that come from the 'intake interview' and/or 'inspection of the building'

- Audit of the building
 - calculating energy use using EPA_NR software based on actual situation
 - Description of the software inputs
 - Results: Energy performance of the building

Audit of the building

- The results
 - **❖** Primary energy use and CO2 emission of the building

Primary energy use for the building : kWh/m²/year	CO2 emission for the building : Kg/m²/year

- **❖** Primary energy use and Co2 emission by type of energy
- **❖** Primary energy and Co2 emission by use
- Heating/cooling energy demand
 - ***** Energy losses: by transmission, by ventilation
 - ***** Energy gains : Solar , internal, ...

 Calculation of energy savings: scenarios for improvement

3 scenarios of improvment with three levels : minimum, medium, high

- ***** Background and proposed solution
- **❖** Individual impact of the proposed solution :
 - energy savings and CO2 emission savings
 - **❖** Investment costs and payback times for the proposed solution

Proposal: the most appropriate scenario as an advice to the owner

Benefits of EPA-NR

- In accordance with the EPBD and using available CEN standards/drafts
- Applicable all over the EU
- Experience from many countries incorporated
- Easily adaptable to local context
- Combined effort is efficient now and in the future (cost sharing)

Thank you for your attention

www.epa-nr.org